Graphics processing units in acceleration of bandwidth selection for kernel density estimation
نویسندگان
چکیده
The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the optimal bandwidth parameter. In this paper we investigate the possibility of utilizing Graphics Processing Units (GPUs) to accelerate the finding of the bandwidth. The contribution of this paper is threefold: (a) we propose algorithmic optimization to one of bandwidth finding algorithms, (b) we propose efficient GPU versions of three bandwidth finding algorithms and (c) we experimentally compare three of our GPU implementations with the ones which utilize only CPUs. Our experiments show orders of magnitude improvements over CPU implementations of classical algorithms.
منابع مشابه
Fast Algorithms for the Solution of Stochastic Partial Differential Equations
Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the s...
متن کاملSemiparametric Localized Bandwidth Selection in Kernel Density Estimation
Since conventional cross–validation bandwidth selection methods do not work for the case where the data considered are serially dependent, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ke...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملHigh Performance Kernel Smoothing Library For Biomedical Imaging
of the Thesis High Performance Kernel Smoothing Library For Biomedical Imaging by Haofu Liao Master of Science in Electrical and Computer Engineering Northeastern University, May 2015 Dr. Deniz Erdogmus, Adviser The estimation of probability density and probability density derivatives has full potential for applications. In biomedical imaging, the estimation of the first and second derivatives ...
متن کاملPlug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data
This paper proposes plug-in bandwidth selection for kernel density estimation with discrete data via minimization of mean summed square error. Simulation results show that the plug-in bandwidths perform well, relative to cross-validated bandwidths, in non-uniform designs. We further find that plug-in bandwidths are relatively small. Several empirical examples show that the plug-in bandwidths ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 23 شماره
صفحات -
تاریخ انتشار 2013